Ride-hailing in the Safe System: Increased Seat Belt Compliance and Late Model Year Vehicles
Read more:
Filters:
- 2025,
- Injury Risk Estimation,
- Peer-reviewed Research,
- Vision Zero
Advancing the state of the art in safe autonomous driving.
46 results found
Authors
Citation:
Campolettano, E. T., Scanlon, J. M., McMurry, T. L., Kusano, K. D. (2025). Ride-hailing in the Safe System: Increased Seat Belt Compliance and Late Model Year Vehicles. In Proceedings of the International Research Council On Biomechanics of Injury (IRCOBI) Conference 2025, Vilnius, Lithuania. Paper number IRC‐25‐67.
Read more:
Filters:
Authors
Citation:
Campolettano, E., T., Kusano, K. D., Victor, T. (2024). Potential Safety Benefits Associated with Speed Limit Compliance in San Francisco and Phoenix. Traffic Injury Prevention (In Press).
Read more:
Filters:
Authors
Citation:
Campolettano, E. T., Scanlon, J. M., McMurry, T. L., Kusano, K. D., & Victor, T. (2025). TARGET setting for high severity collisions: tolerance-based assessment of risk for generalized event thresholds. Traffic Safety Research, 9, e000098. https://doi.org/10.55329/wxoa2712
Read more:
Filters:
Authors
Citation:
Schnelle, S., Favaro, F., Fraade-Blanar, L., Wichner, D., Broce, H., Miranda, J. (2025). Assessing a Safety Case: Bottom-up Guidance for Claims and Evidence Evaluation. arXiv pre-print.
https://doi.org/10.48550/arXiv.2506.09929
Read more:
Filters:
Authors
Citation:
Schumann, J. F., Engstroem, J., Johnson, L., O’Kelly, M., Messias, J., Kober, J., & Zgonnikov, A. (2025). Active inference as a unified model of collision avoidance behavior in human drivers. arXiv preprint arXiv:2506.02215.
Read more:
Filters:
Authors
Citation:
Johnson, L., Engström, J., Srinivasan, A., Özturk, I., & Markkula, G. (2025). Looking for an out: Affordances, uncertainty and collision avoidance behavior of human drivers. arXiv preprint arXiv:2505.14842.
Read more:
Filters:
Authors
Citation:
Favaro, F., Schnelle, S., Fraade-Blanar, L., Victor, T., Peña, M., Webb, N., … & Smith, D. (2025). Determining Absence of Unreasonable Risk: Approval Guidelines for an Automated Driving System Release. arXiv preprint arXiv:2505.09880.
Read more:
Filters:
Authors
Citation:
Kusano, K.D., Scanlon, J. M., Chen, Y., McMurry, T. L., Gode, T., Victor, T. (2025). Comparison of Waymo Rider-Only Crash Rates by Crash Type to Human Benchmarks at 56.7 Million Miles. Traffic Injury Prevention, 26(5), 608–621. https://doi.org/10.1080/15389588.2025.2499887
Read more:
Filters:
Authors
Citation:
Fraade-Blanar, L., Favaro, F. M., Engstrom, J., Cefkin, M., Best R., Lee, J., Victor, T. (2025). Being good (at driving): Characterizing behavioral expectations on automated and human driven vehicles. Waymo LLC.
Read more:
Filters:
Authors
Citation:
Di Lillo, L., Gode, T., Zhou, X., Scanlon, J. M., Chen, R., & Victor, T. (2024). Do Autonomous Vehicles Outperform Latest-Generation Human-Driven Vehicles? A Comparison to Waymo’s Auto Liability Insurance Claims at 25.3M Miles.
Read more:
Filters:
Authors
Citation:
Campolettano, E. T., Scanlon, J. M., Kadar, I., Lavy, L. L., Moura, D., & Kusano, K. D. (2024). Baseline vulnerable road user injury risk in multiple U.S. dense-urban driving environments. Traffic Injury Prevention, 1-11. https://doi.org/10.1080/15389588.2024.2364050.
Read more:
Filters:
Authors
Citation:
Terranova, P., Liu, S.Y., Jain, S., Engstrom, J., Perez, M.A. (2024). Kinematic Characterization of Micro-Mobility Vehicles During Evasive Maneuvers. Journal of Safety Research, 91, 342-353. https://doi.org/10.1016/j.jsr.2024.09.020
Read more:
Filters:
Authors
Citation:
Campolettano, E. T., Scanlon, J. M., Kusano, K. D. (2024). Characterising Vulnerable Road User Evasive Manoeuvring in Real-World Crashes: Injury Risk Implications. In Proceedings of the International Research Consortium on Biomechanics of Injury (IRCOBI) Conference 2024, IRC‐24‐117.
Read more:
Filters:
Authors
Citation:
Schumann, J. F., Engström, J., O’Kelly, M., Kober, J., and Zgonnikov, A. 2024. Active inference-based modeling of human driver collision avoidance behavior. Poster presented at the 5th International Workshop on Active Inference, 9-11 September 2024 in Oxford, UK.
Filters:
Authors
Citation:
Engström, J., O’Kelly, M., Johnson, L., Dinparastdjadid, A., Liu, S-Y and Messias, J., 2024. Active inference as a general framework for modeling human driving behavior. Poster presented at the 5th International Workshop on Active Inference, 9-11 September 2024 in Oxford, UK
Filters:
Authors
Citation:
Campolettano, E. T., Scanlon, J. M., Kusano, K. D. (2024). Representative Cyclist Collision Injury Risk Distributions for a Dense-Urban US ODD Using Naturalistic Dash Camera Data. SAE Technical Paper No. 2024-01-2645. https://doi.org/10.4271/2024-01-2645
Read more:
Filters:
Authors
Citation:
Chen, Y., Scanlon, J. M., Kusano, K. D., McMurry, T., Victor, T. (2024). Dynamic Benchmarks: Spatial and Temporal Alignment for ADS Performance Evaluation. arXiv preprint arXiv:2410.08903. https://arxiv.org/pdf/2410.08903
Read more:
Filters:
Authors
Citation:
Di Lillo, L., Gode, T., Zhou, X., Atzei, M., Chen, R., & Victor, T. (2024). Comparative safety performance of autonomous- and human drivers: A real-world case study of the Waymo Driver. Heliyon, volume 10, issue 14, https://doi.org/10.1016/j.heliyon.2024.e34379
Read more:
Filters:
Authors
Citation:
Engström, J., Wei, R., McDonald, A. D., Garcia, A., O’Kelly, M., & Johnson, L. (2024). Resolving uncertainty on the fly: modeling adaptive driving behavior as active inference. Frontiers in Neurorobotics 18. https://doi.org/10.3389/fnbot.2024.1341750
Read more:
Filters:
Authors
Citation:
Engström, J., Liu, S. Y., Dinparastdjadid, A., & Simoiu, C. (2024). Modeling road user response timing in naturalistic traffic conflicts: A surprise-based framework. Accident Analysis & Prevention, 198, 107460. https://doi.org/10.1016/j.aap.2024.107460
Read more:
Filters:
Authors
Citation:
Kusano, K. D., Scanlon, J. M., Chen, Y. H., McMurry, T. L., Chen, R., Gode, T., & Victor, T. (2024). Comparison of Waymo Rider-only crash data to human benchmarks at 7.1 million miles. Traffic Injury Prevention, 25(sup1), S66–S77. https://doi.org/10.1080/15389588.2024.2380786
Read more:
Filters:
Authors
Citation:
Scanlon, J. M., Teoh, E. R., Kidd, D. G., Kusano, K. D., Bärgman, J., Chi-Johnston, G., Di Lillo, L., Favaro, F., Flannagan, C., Liers, H., Lin, B., Lindman, M., McLaughlin, S., Perez, M., & Victor, T. (2024). RAVE Checklist: Recommendations for Overcoming Challenges in Retrospective Safety Studies of Automated Driving Systems. Traffic Injury Prevention. 1–14. https://doi.org/10.1080/15389588.2024.2435620
Read more:
Filters:
Authors
Citation:
Scanlon, J. M., Kusano, K. D., Fraade-Blanar, L. A., McMurry, T. L., Chen, Y. H., & Victor, T. (2024). Benchmarks for Retrospective Automated Driving System Crash Rate Analysis Using Police-Reported Crash Data. Traffic Injury Prevention, 25(sup1), S51–S65. https://doi.org/10.1080/15389588.2024.2380522
Read more:
Filters:
Authors
Citation:
Schubert, A., Campolettano, E. T., Scanlon, J. M., McMurry, T. L. & Unger, T. (2024). Bridging the gap: Mechanistic-based cyclist injury risk curves using two decades of crash data. Traffic Injury Prevention, 25(sup1), S105–S115. https://doi.org/10.1080/15389588.2024.2400276
Read more:
Filters:
Authors
Citation:
Schubert, A., Babisch, S., Scanlon, J. M., Campolettano, E. T., Roessler, R., Unger, T., McMurry, T. L. (2023). Passenger and heavy vehicle collisions with pedestrians: Assessment of injury mechanisms and risk. Accident Analysis & Prevention, 190, 107139. https://doi.org/10.1016/j.aap.2023.107139
Read more:
Filters:
Authors
Citation:
Campolettano, E. T., Scanlon, J. M., Victor, T. (2023). Descriptive Analysis of Cyclist Dooring Events Using Data from the National Electronic Injury Surveillance System (NEISS). In Proceedings of the International Research Council On Biomechanics of Injury (IRCOBI) Conference 2023, Cambridge, UK. Paper number IRC-23-112.
Read more:
Filters:
Authors
Citation:
Campolettano, E., Scanlon, J. M., Victor, T. (2023). Representative pedestrian collision injury risk distributions for a dense-urban US ODD using naturalistic dash camera data. In Proceedings of the 27th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Yokohama, Japan. Paper number 23-0075.
Read more:
Filters:
Authors
Citation:
Dinparastdjadid, A., Supeene, I., & Engström, J. (2023). Measuring surprise in the wild. arXiv preprint arXiv:2305.07733.
https://doi.org/10.48550/arXiv.2305.07733
Read more:
Filters:
Authors
Citation:
Favaro, F., Fraade-Blanar, L., Schnelle, S., Victor, T., Peña, M., Engstrom, J., Scanlon, J., Kusano, K., Smith, D. (2023). Building a Credible Case for Safety: Waymo’s Approach for the Determination of Absence of Unreasonable Risk. arXiv preprint arXiv:2306.01917. https://doi.org/10.48550/arXiv.2306.01917
Read more:
Filters:
Authors
Citation:
Favaro, F.M., Victor, T., Hohnhold, H. and Schnelle, S. (2023). Interpreting Safety Outcomes: Waymo’s Performance Evaluation in the Context of a Broader Determination of Safety Readiness. In 10th International Symposium on Transportation Data and Modelling (ISTDM2023) Ispra, 19-22 June 2023, Duboz, L. and Ciuffo, B. editor(s), Publications Office of the European Union, Luxembourg, 2023. https://doi.org/10.2760/135735.
Read more:
Filters:
Authors
Citation:
Kusano, K., Scanlon, J., Brännström, M., Engström, J., Victor, T. (2023). Framework for a conflict typology including causal factors for use in ADS safety evaluation. In Proceedings of the 27th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Yokohama, Japan. Paper number 23-0328-O.
Read more:
Filters:
Authors
Citation:
Schnelle, S., Kusano, K., Favaro, F., Sier, G., Victor, T. (2023). Challenges for the evaluation of automated driving systems using current ADAS and active safety test track protocols. In Proceedings of the 27th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Yokohama, Japan. Paper number 23-0329-O.
Read more:
Filters:
Authors
Citation:
Schnelle, S., & Favaro, F. (2023). ADS standardization landscape: Making sense of its status and of the associated research questions. arXiv preprint arXiv:2306.17682. https://doi.org/10.48550/arXiv.2306.17682
Read more:
Filters:
Authors
Citation:
Victor, T., Kusano, K., Gode, T., Chen, R., & Schwall, M. (2023). Safety Performance of the Waymo Rider-Only Automated Driving System at One Million Miles.
Read more:
Filters:
Authors
Citation:
Wei, R., Garcia, A., McDonald, A., Markkula, G., Engstrom, J., Supeene, I., O’Kelly, M. (2022). World Model Learning from Demonstrations with Active Inference: Application to Driving Behavior. In: Buckley, C.L., et al. Active Inference. IWAI 2022. Communications in Computer and Information Science, vol 1721. Springer, Cham. https://doi.org/10.1007/978-3-031-28719-0_9
Read more:
Filters:
Authors
Citation:
Wei, R., McDonald, A.D., Garcia, A., Markkula, G., Engstrom, J., O’Kelly, M. (2023). An active inference model of car following: Advantages and applications. arXiv preprint arXiv:2303.15201. https://doi.org/10.48550/arXiv.2303.15201
Read more:
Filters:
Authors
Citation:
Bangert, L. G., Lubash, T., Scanlon, J. M., Kusano, K. D., & Riexinger, L. E. (2023). Determination of functional scenarios for intersection collisions. Accident Analysis & Prevention, 193, 107326. https://doi.org/10.1016/j.aap.2023.107326
Read more:
Filters:
Authors
Citation:
Favaro, F., Hutchings, K., Nemec, P., Cavalcante, L., Victor, T. (2022). Waymo’s fatigue risk management framework: prevention, monitoring, and mitigation of fatigue-induced risks while testing automated driving systems. arXiv preprint arXiv:2208.12833. https://doi.org/10.48550/arXiv.2208.12833
Read more:
Filters:
Authors
Citation:
Kusano, K., & Victor, T. (2022). Methodology for determining maximum injury potential for automated driving system evaluation. Traffic Injury Prevention, 23(sup1), S224–S227. https://doi.org/10.1080/15389588.2022.2125231
Read more:
Filters:
Authors
Citation:
Kusano, K., Beatty, K., Schnelle, S., Favaro, F., Crary, C., & Victor, T. 2022. Collision avoidance testing of the Waymo automated driving system. arXiv preprint arXiv:2212.08148. https://doi.org/10.48550/arXiv.2212.08148
Read more:
Filters:
Authors
Citation:
Scanlon, J.M., Kusano, K.D., Engström, J., Victor, T (2022). Collision avoidance effectiveness of an automated driving system using a human driver behavior reference model in reconstructed fatal collisions.
Read more:
Filters:
Authors
Citation:
McMurry, T. L., Cormier, J. M., Daniel, T., Scanlon, J. M., & Crandall, J. R. (2021). An omni-directional model of injury risk in planar crashes with application for autonomous vehicles. Traffic Injury Prevention, 22(sup1), S122–S127. https://doi.org/10.1080/15389588.2021.1955108
Read more:
Filters:
Authors
Citation:
Scanlon, J.M., Kusano, K.D., Daniel, T., Alderson, C., Ogle, A., Victor, T. (2021). Waymo simulated driving behavior in reconstructed fatal crashes within an autonomous vehicle operating domain. Accident Analysis & Prevention, 163, 106454. https://doi.org/10.1016/j.aap.2021.106454
Read more:
Filters:
Authors
Citation:
Waymo. (2021). Waymo Safety Report.
Filters:
Authors
Citation:
Schwall, M., Daniel, T., Victor, T., Favaro, F., Hohnhold, H. (2020). Waymo public road safety performance data. arXiv preprint arXiv:2011.00038. https://doi.org/10.48550/arXiv:2011.00038
Read more:
Filters:
Authors
Citation:
Webb, N., Smith, D., Ludwick, C., Victor, T., Hommes, Q., Favaro, F., Ivanov, G., Daniel, T. (2020). Waymo’s safety methodologies and safety readiness determinations. arXiv preprint arXiv:2011.00054. https://doi.org/10.48550/2011.00054
Read more:
Filters: